
L. Nadel and D. Stein, eds.,SFI 1992 Lectures in
Complex Systems, 163–184, Addison–Wesley 1993

The Emergence of Computational Ecologies

Bernardo A. Huberman and Tad Hogg

Xerox Palo Alto Research Center, Palo Alto, California 94304 USA

ABSTRACT

We describe a form of distributed computation in which agents have incomplete
knowledge and imperfect information on the state of the system, and an instantiation
of such systems based on market mechanisms. When agents can choose among
several resources, the dynamics of the system can be oscillatory and even chaotic.
A mechanism is described for achieving global stability through local controls.

1. Introduction

Propelled by advances in software design and increasing connectivity of computer

networks, distributed computational systems are starting to spread throughout offices, lab-

oratories, countries and continents. In these systems computational processes consisting

of the active execution of programs, can spawn new ones in other machines as they make

use of printers, file servers, and other machines of the network as the need arises. In the

most complex applications, various processes can collaborate to solve problems while

competing for the available computational resources, and may also directly interact with

the physical world. This contrasts with the more familiar stand-alone computers, with

traditional methods of centralized scheduling for resource allocation and programming

methods based on serial processing.

The effective use of distributed computation is a challenging task, since the processes

must obtain resources in a dynamically changing environment and be designed to

collaborate despite a variety of asynchronous and unpredictable changes. For instance, the

lack of global perspectives for determining resource allocation requires a very different

approach to system-level programming and the creation of suitable languages. Even

implementing reliable methods whereby processes can compute in machines with diverse

characteristics is difficult.

As these distributed systems grow, they become a community of concurrent processes,

or acomputational ecosystem5, which, in their interactions, strategies, and lack of perfect

knowledge, are analogous to biological ecosystems and human economies. Since all of

these systems consist of a large number of independent actors competing for resources,

this analogy can suggest new ways to design and understand the behavior of these
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emerging computational systems. In particular, these existing systems have methods

to deal successfully with coordinating asynchronous operations in the face of imperfect

knowledge. These methods allow the system as a whole to adapt to changes in the

environment or disturbances to individual members, in marked contrast to the brittle

nature of most current computer programs which often fail completely if there is even a

small change in their inputs or error in the program itself. To improve the reliability and

usefulness of distributed computation, it is therefore of interest to examine the extent to

which this analogy can be exploited.

Statistical mechanics, based on the law of large numbers, has taught us that many

universal and generic features of large systems can be quantitatively understood as

approximations to the average behavior of infinite systems. Although such infinite models

can be difficult to solve in detail, their overall qualitative features can be determined with

a surprising degree of accuracy. Since these features are universal in character and depend

only on a few general properties of the system, they can be expected to apply to a wide

range of actual configurations. This is the case when the number of relevant degrees

of freedom in the system, as well as the number of interesting parameters, is small. In

this situation, it becomes useful to treat the unspecified internal degrees of freedom as if

they are given by a probability distribution. This implies assuming a lack of correlations

between the unspecified and specified degrees of freedom. This assumption has been

extremely successful in statistical mechanics. It implies that although degrees of freedom

may change according to purely deterministic algorithms, the fact that they are unspecified

makes them appear to an outside observer as effectively random.

Consider, for instance, massively parallel systems which are desired to be robust and

adaptable. They should work in the presence of unexpected errors and with changes in

the environment in which they are embedded (i.e. fail soft). This implies that many

of the system’s internal degrees of freedom will be allowed to adjust by taking on a

range of possible configurations. Furthermore, their large size will necessarily enforce a

perspective which concentrates on a few relevant variables. Although these considerations

suggest that the assumptions necessary for a statistical description hold for these systems,

experiments will be necessary for deciding their applicability.

While computational and biological ecosystems share a number of features, we should

also note there are a number of important differences. For instance, in contrast to

biological individuals, computational agents are programed to complete their tasks as

soon as possible, which in turn implies a desirability for their earliest death. This task
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completion may also involve terminating other processes spawned to work on different

aspects of the same problem, as in parallel search, where the first process to find a solution

terminates the others. This much more rapid turnover of agents can be expected to lead

to dynamics at much shorter time scales than seen in biological or economic counterparts.

Another interesting difference between biological and computational ecologies lies

in the fact that for the latter the local rules (or programs for the processes) can be

arbitrarily defined, whereas in biology those rules are quite fixed. Moreover, in distributed

computational systems the interactions are not constrained by a euclidean metric, so that

processes separated by large physical distances can strongly affect each other by passing

messages of arbitrary complexity between them. And last but not least, in computational

ecologies the rationality assumption of game theory can be explicitly imposed on their

agents, thereby making these systems amenable to game dynamic analyses, suitably

adjusted for their intrinsic characteristics. On the other hand, computational agents are

considerably less sophisticated in their decision making capacity than people, which could

cause expectations based on observed human performance from being realized.

There are by now a number of distributed computational systems which exhibit many

of the above characteristics, and that offer increased performance when compared with

traditional operating systems.Enterprise8, is a market-like scheduler where independent

processes or agents are allocated at run time among remote idle workstations through

a bidding mechanism. A more evolved system,Spawn12, is organized as a market

economy composed of interacting buyers and sellers. The commodities in this economy

are computer processing resources; specifically, slices of CPU time on various types

of computers in a distributed computational environment. The system has been shown

to provide substantial improvements over more conventional systems, while providing

dynamic response to changes and resource sharing.

From a scientific point of view, the analogy between distributed computation and

natural ecologies brings to mind the spontaneous appearance of organized behavior in

biological and social systems, where agents can engage in cooperating strategies while

working on the solution of particular problems. In some cases, the strategy mix used by

these agents evolves towards an asymptotic ratio which is constant in time and stable

against perturbations. This phenomenon sometimes goes under the name of evolutionarily

stable strategy (ESS). Recently, it has been shown that spontaneous organization can

also exist in open computational systems when agents can choose among many possible

strategies while collaborating in the solution of computational tasks. In this case however,
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imperfect knowledge and delays in information introduce asymptotic oscillatory and

chaotic states which exclude the existence of simple ESS’s. This is an important finding

in light of studies which resort to notions of evolutionarily stable strategies in the design

and prediction of open system’s performance.

In what follows we will describe a market based computational ecosystem and a

theory of distributed computation. The theory describes the collective dynamics of com-

putational agents, while incorporating many of the features endemic to such systems,

including distributed control, asynchrony, resource contention, and extensive communi-

cation among agents. When processes can choose among many possible strategies while

collaborating in the solution of computational tasks, the dynamics leads to asymptotic

regimes characterized by complex attractors. Detailed experiments have confirmed many

of the theoretical predictions, while uncovering new phenomena, such as chaos induced

by overly clever decision-making procedures.

Next, we will deal with the problem of controlling chaos in such systems, for we

have discovered ways of achieving global stability through local controls inspired by

fitness mechanisms found in nature. Furthermore, we will show how diversity enters into

the picture, along with the minimal amount of such diversity that is required to achieve

stable behavior in a distributed computational system.

2. Computational Markets for Resource Allocation

Allocating resources to competing tasks is one of the key issues for making effective

use of computer networks. Examples include deciding whether to run a task in parallel

on many machines or serially on one; and whether to save intermediate results or

recompute them as needed. The similarity of this problem to resource allocation in

market economies, has prompted considerable interest in using analogous techniques to

schedule tasks in a network environment. In effect, a coordinated solution to the allocation

problem is obtained using Adam Smith’s "invisible hand"10. Although unlikely to produce

the optimal allocation that would be made by an omniscient controller with unlimited

computational capability, it can perform well compared to other feasible alternatives1, 7.

As in economics3, the use of prices provides a flexible mechanism for allocating resources,

with relatively low information requirements: a single price summarizes the current

demand for each resource, whether processor time, memory, communication bandwidth,

use of a database or control of a particular sensor. This flexibility is especially desirable

when resource preferences and performance measures differ among tasks. For instance
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an intensive numerical simulation’s need for fast floating point hardware is quite different

from an interactive text editor’s requirement for rapid response to user commands or a

database search’s requirement for rapid access to the data and fast query matching.

As a conceptual example of how this could work in a computational setting, suppose

that a number of database search tasks are using networked computers to find items of

interest to various users. Furthermore, suppose that some of the machines have fast

floating point hardware but all are otherwise identical. Assuming the search tasks make

little use of floating point operations, their performance will not depend on whether

they run on a machine with fast floating point hardware. In a market based system,

these programs will tend to value each machine based on how many other tasks it is

running, leading to a uniform load on the machines. Now suppose some floating point

intensive tasks arrive in the system. These will definitely prefer the specialized machines

and consequently bid up the price of those particular resources. The database tasks,

observing that the price for some machines has gone up, will then tend to migrate toward

those machines without the fast floating point hardware. Importantly, because of the high

cost of modifying large existing programs, the database tasks will not need to be rewritten

to adjust for the presence of the new tasks. Similarly, there is no need to reprogram the

scheduling method of a traditional central controller, which is often very time consuming.

This example illustrates how a reasonable allocation of resources could be brought

about by simply having the tasks be sensitive to current resource price. Moreover,

adjustments can take place continually as new uses are found for particular network

resources (which could include specialized databases or proprietary algorithms as well as

the more obvious hardware resources), and do not require all users to agree on, or even

know about, these new uses, thus encouraging an incremental and experimental approach

to resource allocation.

While this example motivates the use of market based resource allocation, a study of

actual implementations is required to see how large the system must be for its benefits to

appear and whether any of the differences between simple computer programs and human

agents pose additional problems. In particular, a successful use of markets requires a

number of changes to traditional computer systems. First the system must provide an

easily accessible, reliable market so that buyers and sellers can quickly find each other.

Second, individual programs must be price sensitive so they will respond to changes in

relative prices among resources. This implies that the programs must, in some sense at

least, be able to make choices among various resources based on how well suited they
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are for the task at hand.

A number of market-like systems have been implemented over the years8, 11, 12. Most

instances focus on finding an appropriate machine for running a single task. While this

is important, further flexibility is provided by systems which use market mechanisms to

also manage a collection of parallel processes contributing to the solution of a single

task. In this latter case, prices give a flexible method for allocating resources among

multiple competing heuristics for the same problem based on their perceived progress. It

thus greatly simplifies the development of programs that adjust to unpredictable changes

in resource demand or availability. Thus we have a second reason to consider markets:

not only may they be useful for flexible allocation of computational resources among

competing tasks, but also the simplicity of the price mechanism could provide help with

designing cooperative parallel programs.

One such system is Spawn12, in which each task, starting with a certain amount of

money corresponding to its relative priority, bids for the use of machines on the network.

In this way, each task can allocate its budget toward those resources most important

for it. In addition, when prices are low enough, some tasks can split into several parts

which run in parallel, as shown in Fig. 1, thereby adjusting the number of machines

devoted to each task based on the demand from other users. From a user’s point of view,

starting a task with the Spawn system amounts to giving a command to execute it and the

necessary funding for it to buy resources. The Spawn system manages auctions on each

of the participating machines, the use of resources by each participating task, and provides

communication paths among the spawned processes. It remains for the programmer to

determine the specific algorithms to be used and the meaningful subtasks into which to

partition the problem. That is, the Spawn system provides the price information and a

market, but the individual programs must be written to make their own price decisions to

effectively participate in the market. To allow existing, non-price sensitive, programs to

run within the Spawn system without modification, we provided a simple default manager

that simply attempted to buy time on a single machine for that task. Users could then

gradually modify this manager for their particular task, if desired, to spawn subtasks or

use market strategies more appropriate for the particular task.

Studies with this system show that an equilibrium price can be meaningfully defined

with even a few machines participating. A specific instance is shown in Fig. 2. De-

spite the continuing fluctuations, this small network reaches a rough price equilibrium.

Moreover, the ratio of prices between the two machines closely matches their relative
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speeds, which was the only important difference between the two types of machine for

these tasks. An additional experiment studied a network with some lengthy, low priority

tasks to which was added a short, high priority task. The new task rapidly expands

throughout the network by outbidding the existing tasks and driving the price of CPU

time up, as shown in Fig. 3. It is therefore able to briefly utilize a large number of

networked machines and illustrates the inherent flexibility of market based resource allo-

cation. Although the very small networks used in these experiments could be adequately

managed centrally, these results do show that expected market behavior can emerge even

in small cases.

APPLICATION SUBTASK

TOP-LEVEL APPLICATION

APPLICATION SUBSUBTASK APPLICATION SUBSUBTASK

APPLICATION SUBTASK

USER INTERFACE
ROOT

WM

WM

WMWM

COMBINING

Fig. 1. Managing parallel execution of subtasks in Spawn. Worker processes (W) report progress to their local
managers (M) who in turn make reports to the next higher level of management. Upper management combines data
into aggregate reports. Finally, the root manager presents results to the user. Managers also bid for the use of additional
machines and, if successful, spawn additional subtasks on them.

Computer market systems can be used to experimentally address a number of

additional issues. For instance, understanding what happens when more sophisticated

programs begin to use the network, e.g., processes that attempt to anticipate future loads

so as to maximize their own resource usage. Such behavior can destabilize the overall

system. Another area of interest is the emergence of diversity or specialization from a

group of initially similar machines. For example, a machine might cache some of the

routines or data commonly used by its processes, giving it a comparative advantage in

bids for similar tasks in the future. Ultimately this could result in complex organizational
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Fig. 2. Price as a function of time (in seconds) in an inhomogeneous Spawn network consisting of three Sun 4/260’s
and six Sun 4/110’s running four independent tasks. The average price of the 260’s is in black, the less powerful
110’s in gray.
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Fig. 3. Price as a function of time (in seconds) when a high-priority task is introduced into a Spawn network running
low-priority jobs. The first vertical line segment on the time axis marks the introduction of the high-priority task, and
the second one the termination of its funding.

structures embedded within a larger market framework9. Within these groups, some

machines could keep track of the kinds of problems for which others perform best and

use this information to guide new tasks to appropriate machines. In this way the system

could gradually learn to perform common tasks more effectively.

These experiments also highlighted a number of more immediate practical issues. In

setting up Spawn, it was necessary to find individuals willing to allow their machines to

be part of the market. While it would seem simple enough to do so, in practice a number

of incentives were needed to overcome the natural reluctance of people to have other
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tasks running on their machines. This reluctance is partly based on perceived limitations

on the security of the network and the individual operating systems; for it was possible

that a remote procedure could crash an individual machine or consume more resources

than anticipated. In particular, users with little need for compute-intensive tasks saw

little benefit from participating since they had no use for the money collected by their

machines. This indicates the need to use real money in such situations so that these users

could use their revenues for their own needs. This in turn, brings the issue of computer

security to the forefront so users will feel confident that no counterfeiting of money takes

place and tasks will in fact be limited to only use resources they have paid for.

Similarly, for those users participating in the system as buyers, they need to have

some idea of what amount of money is appropriate to give a task. In a fully developed

market, there could easily be tools to monitor the results of various auctions and hence

give a current market price for resources. However, when using a newly created market

with only a few users, tools are not always available to give easy access to prices, and

even if they are, the prices have large fluctuations. Effective use of such a system also

requires users to have some idea of what resources are required for their programs, or,

better yet, to encode that information in the program itself so it will be able to respond

to available resources, e.g., by spawning subtasks, more rapidly than the users can.

Conversely, there must be a mechanism whereby sellers can make available information

about the characteristics of their resources (e.g., clock speed, available disk space or

special hardware). This can eventually allow for more complex market mechanisms,

such as auctions that attempt to sell simultaneous use of different resources (e.g., CPU

time and fast memory) or future use of currently unavailable resources to give tasks a

more predictable use of resources. Developing and evaluating a variety of auction and

price mechanisms that are particularly well suited to these computational tasks is an

interesting open problem.

Finally, these experimental systems help clarify the differences between human and

computer markets. For instance, computational processes can respond to events much

more rapidly than people, but are far less sophisticated. Moreover, unlike the situation

with people, particular incentive structures, rationality assumptions, etc. can be explicitly

built into computational processes allowing for the possibility of designing particular

market mechanisms. This could lead to the ironic situation in which economic theory

has greater predictability for the behavior of computational markets than for that of the

larger, and more complex, human economy.
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3. Chaos in Computational Ecosystems

The systems we have been discussing are basically made up of simple agents with fast

response times, compared to human in economic settings, which are complex and slower.

This implies that an understanding of the behavior of computational ecosystems requires

focusing on the dynamics of collections of agents capable of a set of simple decisions.

Since decisions in a computational ecosystem aren’t centrally controlled, agents

independently and asynchronously select among the available choices based on their

perceived payoff. These payoffs are actual computational measures of performance, such

as the time required to complete a task, accuracy of the solution, amount of memory

required, etc. In general, the payoff�� for using resourcer depends on the number

of agents already using it. In a purely competitive environment, the payoff for using

a particular resource tends to decrease as more agents make use of it. Alternatively,

the agents using a resource could assist one another in their computations, as might be

the case if the overall task could be decomposed into a number of subtasks. If these

subtasks communicate extensively to share partial results, the agents will be better off

using the same computer rather than running more rapidly on separate machines and then

being limited by slow communications. As another example, agents using a particular

database could leave index links that are useful to others. In such cooperative situations,

the payoff of a resource would then increase as more agents use it, until it became

sufficiently crowded.

Imperfect information about the state of the system causes each agent’s perceived

payoff to differ from the actual value, with the difference increasing when there is more

uncertainty in the information available to the agents. This type of uncertainty concisely

captures the effect of many sources of errors such as some program bugs, heuristics

incorrectly evaluating choices, errors in communicating the load on various machines

and mistakes in interpreting sensory data. Specifically, the perceived payoffs are taken

to be normally distributed, with standard deviation�, around their correct values. In

addition, information delays cause each agent’s knowledge of the state of the system to

be somewhat out of date. Although for simplicity we will consider the case in which all

agents have the same effective delay, uncertainty, and preferences for resource use, we

should mention that the same range of behaviors is also found in more general situations4.

As a specific illustration of this approach, we consider the case of two resources, so

the system can be described by the fractionf of agents which are using resource 1 at any
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given time. Its dynamics is then governed by5

��

��
� ���� �� (1)

where� is the rate at which agents reevaluate their resource choice and� is the probability

that an agent will prefer resource 1 over 2 when it makes a choice. Generally,� is

a function of f through the density dependent payoffs. In terms of the payoffs and

uncertainty, we have

� �
�

�

�
� � erf

�
�����������

��

��
(2)

where � quantifies the uncertainty. Notice that this definition captures the simple

requirement that an agent is more likely to prefer a resource when its payoff is relatively

large. Finally, delays in information are modeled by supposing that the payoffs that enter

into � at time t are the values they had at a delayed time� � � .

For a typical system of many agents with a mixture of cooperative and competitive

payoffs, the kinds of dynamical behaviors exhibited by the model are shown in Fig. 4.

When the delays and uncertainty are fairly small, the system converges to an equilibrium

point close to the optimal obtainable by an omniscient, central controller. As the

information available to the agents becomes more corrupted, the equilibrium point moves

further from the optimal value. With increasing delays, the equilibrium eventually

becomes unstable, leading to the oscillatory and chaotic behavior shown in the figure. In

these cases, the number of agents using particular resources continues to vary so that the

system spends relatively little time near the optimal value, with a consequent drop in its

overall performance. This can be due to the fact that chaotic systems are unpredictable,

hence making it difficult for individual agents to automatically select the best resources

at any given time.

4. The Uses of Fitness

We will now describe an effective procedure for controlling chaos in distributed

systems4. It is based on a mechanism that rewards agents according to their actual

performance. As we shall see, such an algorithm leads to the emergence of a diverse

community of agents out of an essentially homogenous one. This diversity in turn

eliminates chaotic behavior through a series of dynamical bifurcations which render

chaos a transient phenomenon.
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Fig. 4. Typical behaviors for the fractionf of agents using resource 1 as a function of time for successively longer
delays: a) relaxation toward stable equilibrium, b) simple persistent oscillations, and c) chaotic oscillations. The
payoffs are�� � �� �� � ������� for resource 1 and�� � �� �� for resource 2. The time scale is in units of the
delay time� , � � ��� and the dashed line shows the optimal allocation for these payoffs.

The actual performance of computational processes can be rewarded in a number

of ways. A particularly appealing one is to mimic the mechanism found in biological

evolution, where fitness determines the number of survivors of a given species in a

changing environment. This mechanism is used in computation under the name ofgenetic

algorithms2. Another example is provided by computational systems modelled on ideal

economic markets9, 12, which reward good performance in terms of profits. In this case,

agents pay for the use of resources, and they in turn are paid for completing their tasks.

Those making the best choices collect the most currency and are able to outbid others

for the use of resources. Consequently they come to dominate the system.

While there is a range of possible reward mechanisms, their net effect is to increase
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the proportion of agents that are performing successfully, thereby decreasing the number

of those who do not do as well. It is with this insight in mind that we now developed

a general theory of effective reward mechanisms without resorting to the details of their

implementations. Since this change in agent mix will in turn change the choices made

by every agent and their payoffs, those that were initially most successful need not be

so in the future. This leads to an evolving diversity whose eventual stability is by no

means obvious.

Before proceeding with the theory we point out that the resource payoffs that we will

consider are instantaneous ones (i.e. shorter than the delays in the system), e.g. work

actually done by a machine, currency actually received, etc. Other reward mechanisms,

such as those based on averaged past performance, could lead to very different behavior

from the one exhibited in this paper.

In order to investigate the effects of rewarding actual performance we generalize the

previous model of computational ecosystems by allowing agents to be of different types,

a fact which gives them different performance characteristics. Recall that the agents need

to estimate the current state of the system based on imperfect and delayed information

in order to make good choices. This can be done in a number of ways, ranging from

extremely simple extrapolations from previous data to complex forecasting techniques.

The different types of agents then correspond to the various ways in which they can

make these extrapolations.

Within this context, a computational ecosystem can be described by specifying the

fraction of agents,��� of a given types using a given resourcer at a particular time. We

will also define the total fraction of agents using a resource of a particular type as

��	�� �
�
�

���

� 
��	� �
�
�

���
(3)

respectively.

As mentioned previously, the net effect of rewarding performance is to increase the

fraction of highly performing agents. If� is the rate at which performance is rewarded,

then Eq. 1 is enhanced with an extra term which corresponds to this reward mechanism.

This gives

����
��

� �
�
� 
��	� ��� � ���

�
� ����	�� �� � ���� (4)
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where the first term is analogous to that of the previous theory, and the second term

incorporates the effect of rewards on the population. In this equation��� is the probability

that an agent of types will prefer resourcer when it makes a choice, and�� is the

probability that new agents will be of types, which we take to be proportional to the

actual payoff associated with agents of types. As before,� denotes the rate at which

agents make resource choices and the detailed interpretation of� depends on the particular

reward mechanism involved. For example, if they are replaced on the basis of their fitness

it is the rate at which this happens. In a market system, on the other hand,� corresponds

to the rate at which agents are paid. Notice that in this case, the fraction of each type

is proportional to the wealth of agents of that type.

Since the total fraction of agents of all types must be one, a simple form of the

normalization condition can be obtained if one considers the relative payoff, which is

given by

�� �

�
�
������

�
��	�� ��

(5)

Note that the numerator is the actual payoff received by agents of types given their current

resource usage and the denominator is the total payoff for all agents in the system, both

normalized to the total number of agents in the system. This form assumes positive

payoffs, e.g. they could be growth rates. If the payoffs can be negative (e.g. they are

currency changes in an economic system), one can use instead the difference between

the actual payoffs and their minimum valuem. Since the�� must sum to 1, this will give

�� �

�
�
����� �	�

�
��	�� �� � 
	

(6)

which reduces to the previous case when	 � �.

Summing Eq. 4 over all resources and types gives

���	��

��
� �

��
�

� 
��	� ��� � ��	��

�

�� 
��	�

��
� �

�
�� � � 
��	�

� (7)

which describe the dynamics of overall resource use and the distribution of agent types,

respectively. Note that this implies that those agent types which receive greater than
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average payoff (i.e. types for which�� � �

��	
� ) will increase in the system at the

expense of the low performing types.

Note that the actual payoffs can only reward existing types of agents. Thus in order

to introduce new variations into the population an additional mechanism is needed (e.g.

corresponding to mutation in genetic algorithms or learning).

5. Results

In order to illustrate the effectiveness of rewarding actual payoffs in controlling chaos,

we examine the dynamics generated by Eq. 4 for the case in which agents choose among

two resources with cooperative payoffs, a case which we have shown to generate chaotic

behavior in the absence of rewards5, 6. As in the particular example of Fig. 4c, we use

� � ��� �� � � � 	�� � 

���� �� � �� � 	 � ���� � � ��� , and an initial condition

in which all agents start by using resource 2.

One kind of diversity among agents is motivated by the simple case in which

the system oscillates with a fixed period. In this case, those agents that are able to

discover the period of the oscillation can then use this knowledge to reliably estimate the

current system state in spite of delays in information. Notice that this estimate does not

necessarily guarantee that they will keep performing well in the future, for their choice

can change the basic frequency of oscillation of the system.

In what follows, we take the diversity of agent types to correspond to the different

past horizons, or extra delays, that they use to extrapolate to the current state of the

system. These differences in estimation could be due to having a variety of procedures

for analyzing the system’s behavior. Specifically, we identify different agent types with

the different assumed periods which range over a given interval. Thus, we take agents

of type s to use an effective delay of� � � while evaluating their choices.

The resulting behavior is shown in Fig. 5 which should be contrasted with Fig. 4c.

We used an interval of extra delays ranging from 0 to 40. As shown, the introduction of

actual payoffs induces a chaotic transient which, after a series of dynamical bifurcations,

settles into a fixed point that signals stable behavior. Furthermore, this fixed point is

exactly that obtained in the case of no delays. That this equilibrium is stable against

perturbations can seen by the fact that if the system were perturbed again (as shown in

Fig 6), it rapidly returns to its previous value. In additional experiments, with a smaller

15



 

200 400 600 800 1000 1200 1400

time

0.2

0.4

0.6

0.8

f

Fig. 5. Fraction of agents using resource 1 as a function of time with adjustment based on actual payoff. These
parameters correspond to Fig. 4c so without the adjustment the system would remain chaotic.
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Fig. 6. Behavior of the system shown in Fig. 5 with a perturbation introduced at time 1500.

range of delays, we found that the system continued to oscillate without achieving the

fixed point.

This transient chaos and its eventual stability can be understood from the distribution

of agents with extra delays as a function of time. As can be seen in Fig. 7 actual payoffs

lead to a highly heterogeneous system, characterized by a diverse population of agents

of different types. It also shows that the fraction of agents with certain extra delays

increases greatly. These delays correspond to the major periodicities in the system.

6. Stability and Minimal Diversity

As we showed in the previous section, rewarding the performance of large collections

of agents engaging in resource choices leads to a highly diverse mix of agents that stabilize

the system. This suggests that the real cause of stability in a distributed system is that

provided by sufficient diversity, and that the reward mechanism is an efficient way of
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Fig. 7. Ratio� ����� �
	�� ����� �
	 of the fraction of agents of each type, normalized to their initial values, as a function
of time. Note there are several peaks, which correspond to agents with extra delays of 12, 26 and 34 time units. Since
� � �
, these match periods of length 22, 36 and 44 respectively.

automatically finding a good mix. This raises the interesting question of the minimal

amount of diversity needed in order to have a stable system.

The stability of a system is determined by the behavior of a perturbation around

equilibrium, which can be found from the linearized version of Eq. 4. In our case, the

diversity is related to the range of different delays that agents can have. For a continuous

distribution of extra delays, the characteristic equation is obtained by assuming a solution

of the type�

 in the linearized equation, giving

� � �� ���

�
�� ���� �������� � � (8)

Stability requires that all the values of� have negative real parts, so that perturbations will

relax back to equilibrium. As an example, suppose agent types are uniformly distributed

in (0, S). Then���� � ���, and the characteristic equation becomes

� � �� �	�
�� ����

��
���� � � (9)

Defining a normalized measure of the diversity of the system for this case by
 � ��� ,

introducing the new variable� � �� �� � 
�, and multiplying Eq. 9 by� �� � 
����

introduces an extra root at� � � and gives

�
�� � 
�

�
�� � �� ���� � � (10)
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where

 � �� �� � 
� � �

� � �	�
�� �� � 
��



� �

� �



� � 

� ��� ��

(11)

The stability of the system with uniform distribution of agents with extra delays thus

reduces to finding the condition under which all roots of Eq. 10, other than� � �, have

negative real parts. This equation is a particular instance of anexponential polynomial,

whose terms consist of powers multiplied by exponentials. Unlike regular polynomials,

these objects generally have an infinite number of roots, and are important in the study

of the stability properties of differential-delay equations. Established methods can then

be used to determine when they have roots with positive real parts. This in turn defines

the stability boundary of the equation. The result for the particular case in which

	� � ��������, corresponding to the parameters used in Sec. 5, is shown in the left

half of Fig. 8.
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Fig. 8. Stability as a function of� � �� and 	 � �
� for two possible distributions of agent types: a)
���� � �

�
in ��� ��, and b) ���� � �
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����. The system is unstable in the shaded regions and stable to the

right and below the curves.
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Similarly, if we choose an exponential distribution of delays, i.e.���� � �
� �

��
�

with positive S, the characteristic equation acquires the form

�
�� � �� � �

�
�� � � � � (12)

where
� � �� � ��
 � �

� � ���
 � �

� � ���	��
 � �

(13)

and � � �� . An analysis similar to that for the uniform distribution case leads to the

stability diagram shown in the right hand side of the figure.

Although the actual distributions of agent types can differ from these two cases, the

similarity between the stability diagrams suggests that regardless of the magnitude of�

one can always find an appropriate mix that will make the system stable. This property

follows from the vertical asymptote of the stability boundary. It also illustrates the need

for a minimum diversity in the system in order to make it stable when the delays aren’t

too small.

Having established the right mix that produces stability one may wonder whether

a static assignment of agent types at an initial time would not constitute a simpler and

more direct procedure to stabilize the system without resorting to a dynamic reward

mechanism. While this is indeed the case in a non-fluctuating environment, such a static

mechanism cannot cope with changes in both the nature of the system (e.g., machines

crashing) and the arrival of new tasks or fluctuating loads. It is precisely to avoid this

vulnerability by keeping the system adaptive that a dynamic procedure is needed.

Having seen how sufficient diversity stabilizes a distributed system, we now turn to

the mechanisms that can generate such heterogeneity, as well as the time that it takes

for the system to stabilize. In particular, the details of the reward procedures determine

whether the system can even find a stable mix of agents. In the cases describe above,

reward was proportional to actual performance, as measured by the payoffs associated

with the resources used. One might also wonder whether stability would be achieved

more rapidly by giving greater (than their fair share) increases to the top performers.

We have examined two such cases: a) rewards proportional to the square of their

actual performance, and b) giving all the rewards to top performers (e.g., those performing

at the 90th percentile or better in the population). In the former case we observed stability

with a shorter transient, whereas in the latter case the mix of changes continued to change
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through time, thus preventing stable behavior. This can be understood in terms of our

earlier observation that whereas a small percentage agents can identify oscillation periods

and thereby reduce their amplitude, a large number of them can no longer perform well.

Note that the time to reach equilibrium is determined by two parameters of the system.

The first is the time that it takes to find a stable mix of agent types, which is governed by

�, and the second the rate at which perturbations relax, given the stable mix. The latter

is determined by the largest real part of any of the roots,�, of the characteristic equation.

7. Discussion

In this paper we have presented a case for treating distributed computation as an

ecosystem, an analogy that turns out to be quite fruitful in the analysis, design, and control

of such systems. In spite of the many differences between computational processes and

organisms, resource contention, complex dynamics and reward mechanisms seem to be

ubiquitous in distributed computation, making it also a tool for the study of natural

ecosystems.

Since chaotic behavior seems to be the natural resultant of interacting processes

with imperfect and delayed information, the problem of controlling such systems is of

paramount importance. We discovered that rewards based on the actual performance

of agents in a distributed computational system can stabilize an otherwise chaotic or

oscillatory system. This leads in turn to greatly improved system performance.

In all these cases, stability is achieved by making chaos a transient phenomena. In

the case of distributed systems, the addition of the reward mechanism has the effect

of dynamically changing the control parameters of the resource allocation dynamics in

such a way that a global fixed point of the system is achieved. This brings the issue of

the length of the chaotic transient as compared to the time needed for most agents to

complete their tasks. Even when the transients are long, the results of this study show

that the range gradually decreases, thereby improving performance even before the fixed

point is achieved.

A particularly relevant question for distributed systems is the extent to which these

results generalize beyond the mechanism that we studied. Since we only considered the

specific situation of a collection of agents with different delays in their appraisal of the

system evolution, it is of interest to inquire whether using rewards to increase diversity

works more generally than in the case of extra delays.
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Since we only considered agents choosing between only two resources, it is important

to understand what happens when there are many resources the agents can choose from.

One may argue that since diversity is the key to stability, a plurality of resources provides

enough channels to develop the necessary heterogeneity, which is what we observed in

situations with three resources. Another note of caution has to do with the effect of

fluctuations on a finite population of agent types. While we have shown that sufficient

diversity can, on average, stabilize the system, in practice a fluctuation could wipe out

those agent types that would otherwise be successful in stabilizing the system. Thus, we

need either a large number of each kind of agent or a mechanism, such as mutation, to

create new kinds of agents.

A final issue concerns the time scales over which rewards are assigned to agents. In

our treatment, we assumed the rewards were always based on the performance at the time

they were given. Since in many cases this procedure is delayed, there is the question of

the extent to which rewards based on past performance are also able to stabilize chaotic

distributed systems.

The fact that these simple resource allocation mechanisms work and produce a stable

environment provides a basis for developing more complex software systems that can be

used for a wide range of computational problems.
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